Explaining gene responses by linear modeling

نویسندگان

  • Yvonne Poeschl
  • Ivo Grosse
  • Andreas Gogol-Döring
چکیده

Abstract: Increasing our knowledge about molecular processes in response to a certain treatment or infection in plants, insects, or other organisms requires the identification of the genes involved in this response. In this paper, we propose the Profile Interaction Finder (PIF) to identify such genes from gene expression data which is based on a convex linear model, and we investigate its efficacy for two applications related to stimulus response. First, we seek to identify sets of putative regulatory genes that explain the expression levels of a gene under different stimuli best. Second, we aim at identifying genes that show a specific response to a stimulus or a combination of stimuli. For both applications, we study the expression response of two Arabidopsis species to treatment with the plant hormone auxin and of Apis mellifera to pathogen infection. The proposed approach may be of general utility for analyzing expression data with a focus on genes and gene sets that explain specific stimulus response.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In-silico prediction of Cellular Responses to Polymeric Biomaterials from Their Molecular Descriptors

In this work quantitative structure activity relationship (QSAR) methodology was applied for modeling and prediction of cellular response to polymers that have been designed for tissue engineering. After calculation and screening of molecular descriptors, linear and nonlinear models were developed by using multiple linear regressions (MLR) and artificial neural network (ANN) methods. The root m...

متن کامل

Robust Fuzzy Gain-Scheduled Control of the 3-Phase IPMSM

This article presents a fuzzy robust Mixed - Sensitivity Gain - Scheduled H controller based on the Loop -Shaping methodology for a class of MIMO uncertain nonlinear Time - Varying systems. In order to design this controller, the nonlinear parameter - dependent plant is first modeled as a set of linear subsystems by Takagi and Sugeno’s (T - S) fuzzy approach. Both Loop - Shaping methodology and...

متن کامل

Modeling and Forecasting Effects of Crude Oil Price Changes on the US and UK GDP

        This paper proposes a new forecasting model for investigating relationship between the price of crude oil, as an important energy source and GDP of the US, as the largest oil consumer, and the UK, as the oil producer. GMDH neural network and MLFF neural network approaches, which are both non-linear models, are employed to forecast GDP responses to the oil price changes. The resul...

متن کامل

Quantitative Modeling of Microbial Population Responses to Chronic Irradiation Combined with Other Stressors

Microbial population responses to combined effects of chronic irradiation and other stressors (chemical contaminants, other sub-optimal conditions) are important for ecosystem functioning and bioremediation in radionuclide-contaminated areas. Quantitative mathematical modeling can improve our understanding of these phenomena. To identify general patterns of microbial responses to multiple stres...

متن کامل

Strong Immune Responses Induced by a DNA Vaccine Containing HPV16 Truncated E7 C-terminal Linked to HSP70 Gene

Background: Vaccines capable of controlling tumor virus based infections are found difficult to develop due to the consistence latent infection in the host. DNA vaccines are attractive tools for the development of HPV vaccines and inducing antigen-specific immunity owing to the stability, simplicity of delivery, safety and cost effectiveness. However, there is a need to increase their potency b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014